headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
Vol. 57, Issue 4
Vol. 57, Issue 3
Vol. 57, Issue 2
Vol. 57, Issue 1
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

On the acceleration of convergence by regular matrix methods; pp. 3–17

(Full article in PDF format) doi: 10.3176/proc.2008.1.01


Authors

Ants Aasma

Abstract

Regular matrix methods that improve and accelerate the convergence of sequences and series are studied. Some problems related to the speed of convergence of sequences and series with respect to matrix methods are discussed. Several theorems on the improvement and acceleration of the convergence are proved. The results obtained are used to increase the order of approximation of Fourier expansions and Zygmund means of Fourier expansions in certain Banach spaces.

Keywords

convergence acceleration, matrix methods, Fourier expansions, order of approximation.

References

  1. Brezinski , C. Convergence acceleration during the 20th century. J. Comput. Appl. Math. , 1999 , 122 , 1–21.
doi:10.1016/S0377-0427(00)00360-5

  2. Caliceti , E. , Meyer-Hermann , M. , Ribeca , P. , Surzhykov , A. and Jentschura , U. D. From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep. , 2007 , 446 , 1–96.
doi:10.1016/j.physrep.2007.03.003

  3. Kangro , G. On the summability factors of the Bohr–Hardy type for a given rapidity. I. ENSV Tead. Akad. Toim. Füüs. Matem. , 1969 , 18 , 137–146 (in Russian).

  4. Kangro , G. Summability factors for the series l-bounded by the methods of Riesz and Cesàro. Acta Comment. Univ. Tartuensis , 1971 , 277 , 136–154 (in Russian).

  5. Kornfeld , I. Nonexistence of universally accelerating linear summability methods. J. Comput. Appl. Math. , 1994 , 53 , 309–321.
doi:10.1016/0377-0427(94)90059-0

  6. Tammeraid , I. Generalized linear methods and convergence acceleration. Math. Model. Anal. , 2003 , 8 , 87–92.

  7. Tammeraid , I. Convergence acceleration and linear methods. Math. Model. Anal. , 2003 , 8 , 329–335.

  8. Tammeraid , I. Several remarks on acceleration of convergence using generalized linear methods of summability. J. Comput. Appl. Math. , 2003 , 159 , 365–373.
doi:10.1016/S0377-0427(03)00539-9

  9. Aasma , A. Some remarks on convergence improvement by regular matrices. In Proceedings of International Conference on Operational Research: Simulation and Optimisation in Business and Industry (Pranevičius , H. , Vaarmann , O. and Zavadskas , E. , eds). Technologia , Kaunas , 2006 , 95–99.

10. Butzer , P. L. and Nessel , R. I. Fourier Analysis and Approximation I: One-Dimensional Theory. Birkhäuser , Basel , 1971.

11. Trebels , W. Multipliers for (C , a)-bounded Fourier expansions in Banach spaces and approximation theory. Lecture Notes Math. , 1973 , 329.

12. Leiger , T. Methods of Functional Analysis in Summability Theory. Tartu University Press , Tartu , 1992 (in Estonian).

13. Boos , J. Classical and Modern Methods in Summability. Oxford University Press , Oxford , 2000.

14. Aasma , A. Matrix transformations of l-boundedness fields of normal matrix methods. Stud. Sci. Math. Hungar. , 1999 , 35 , 53–64.

15. Stieglitz , M. and Tietz , H. Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht. Math. Z. , 1977 , 154 , 1–14.
doi:10.1007/BF01215107

16. Kangro , G. On summability factors. Acta Comment. Univ. Tartuensis , 1955 , 37 , 191–229 (in Russian).

17. Baron , S. Introduction to the Theory of Summability of Series. Valgus , Tallinn , 1977 (in Russian).

18. Aasma , A. Comparison of orders of approximation of Fourier expansions by different matrix methods. Facta Univ. (Niš) Ser. Math. Inform. , 1997 , 12 , 233–238.

19. Aasma , A. On the summability of Fourier expansions in Banach spaces. Proc. Estonian Acad. Sci. Phys. Math. , 2002 , 51 , 131–136.
 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December