ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Engineering
Advanced laser speckle techniques characterize the complex thermomechanical properties of thin multilayered structures; pp. 394–408
PDF | https://doi.org/10.3176/eng.2007.4.12

Authors
Peter Zimprich, Bernhard G. Zagar
Abstract

Non-contacting methods for strain and displacement measurement are now well established, although not widely used in material science. Some applications like the determination of coefficients of thermal expansion, especially of thin multilayered structures, are particularly demanding and definitely require non-contacting methods. The paper shows that laser speckle pattern shift techniques can be successfully utilized for that kind of strain and displacement measurements. We elaborate a theory of laser speckle displacement estimation and show that these optical systems are sufficiently rigid and sensitive to determine the values of thermal expansion coefficients for small to medium-sized Si-based semiconductor devices like insulated gate bipolar power transistors.

References

  1. Yamaguchi, I. A laser–speckle strain gauge. J. Phys. E: Sci. Instrum., 1981, 14, 1270–1273.
doi:10.1088/0022-3735/14/11/012

  2. Sjödahl, M. A whole field speckle strain sensor. In Proc. SPIE Conference on Optical Engineering. Yokohama, 1999.

  3. Tuma, M. L. Results from real-time laser speckle-shift strain measurements. Opt. Eng., 2000, 39, 498–504.
doi:10.1117/1.602399

  4. Kobayashi, A. S. (ed.). Handbook of Experimental Mechanics. Society for Experimental Mechanics, VCH, New York, 1993.

  5. Goodman, J. W. Introduction to Fourier Optics. McGraw–Hill, New York, 1968.

  6. Anwander, M., Zagar, B. G., Weiss, B. and Weiss, H. Noncontacting strain measurements at high temperatures by the digital laser speckle technique. Exp. Mech., 2000, 40, 697–702.
doi:10.1007/BF02327556

  7. Schneider, S. C., Rupitsch, S. J. and Zagar, B. G. Signal processing for laser speckle strain measurement techniques. IEEE Trans. Instr. Measur., 2007, 56, No. 6.

  8. Kargel, C. and Zagar, B. G. Optimum analog to digital converters for a laser speckle correlation based displacement and strain sensor with optical preprocessing. Opt. Eng., 2001, 40, 90–94.
doi:10.1117/1.1331271

  9. Jones, R. and Wykes, C. Holographic and Speckle Interferometry, 2nd~ed. Cambridge Univ. Press, 1989.

10. Sharpe, W. N., Jr. Development and application of an interferometric system for measuring crack displacements. Final Report, NASA–CR–145106, 77N12367, 1977.

11. Piersol, A. G. Time delay estimation using phase data. IEEE Trans. Acoust. Speech Signal Process., 1981, 29, 471–477.
doi:10.1109/TASSP.1981.1163555

12. Zagar, B. G. and Kargel, C. A laser-based strain sensor with optical preprocessing. IEEE Trans. Instr. Measur., 1999, 48, 97–101.
doi:10.1109/19.755067

13. Schneider, S. Entwicklung eines laser-optischen Messsystems zur berührungslosen Bestimmung von mechanischen Materialparametern. Ph.D Thesis. University of Linz, 2005.

14. Kay, S. Fundamentals of Statistical Signal Processing – Estimation Theory. Prentice Hall, Englewood Cliffs, 1998.

15. Lefranc, G., Weiss, B., Klos, C., Dick, J., Khatibi, G. and Berg, H. Aluminium bond-wire properties after 1 billion mechanical cycles. Microelectronics Reliab., 2003, 43, 1833–1838.
doi:10.1016/S0026-2714(03)00312-3

16. Berg, H. and Wolfgang, E. Advanced IGBT modules for railway traction testing for thermal fatigue effects due to traction cycles. Microelectronics Reliab., 1998, 38, 1353–1359.

17. Ramminger, S., Türkes, P. and Wachutka, G. Crack mechanism in wire bonding joints. Microelectronics Reliab., 1998, 38, 1301–1305.
doi:10.1016/S0026-2714(98)00141-3

18. Ziebs, J., Bresers, J., Frenz, H., Hayhurst, D. R., Klingelhöffer, H. and Forest, S. In Proc. Intl. Symposium on Local Strain and Temperature Measurement in Non-uniform Fields at Elevated Temperatures. Woodhead, Cambridge, UK, 1996.

19. Zimprich, P., Licht, T. and Weiss, B. A new method to characterize the thermomechanical response of multilayered structures in power electronics. Microelectronics Reliab., 2006, 46, 1844–1847.
doi:10.1016/j.microrel.2006.07.067

20. Zoo, Y., Adams, D., Mayer, J. W. and Alford, T. L. Investigation of the coefficient of thermal expansion of silver thin film on different substrates using X-ray diffraction. Thin Solid Films, 2006, No. 513, 170–174.
doi:10.1016/j.tsf.2006.02.005

21. Fang, W. and Lo, Ch.-Y. On the thermal expansion coefficients of thin films. Sensors Actuators, 2000, 84, 310–314.
doi:10.1016/S0924-4247(00)00311-3

22. Brezina, S. Anwendung eines Laserinterferometers zur berührungslosen Messung der lokalen Wärmeausdehnung von verschiedenen Materialien. Dipl. Thesis, University of Vienna, 1996.

Back to Issue

Back issues