headerpos: 9507
 
 
  Estonian Journal of Engineering

ISSN 1736-7522 (electronic)  ISSN 1736-6038  (print)

 An international scientific journal
Formerly: Proceedings of the Estonian Academy of Sciences Engineering
(ISSN 1406-0175)
Published since 1995

Estonian Journal of Engineering

ISSN 1736-7522 (electronic)  ISSN 1736-6038  (print)

 An international scientific journal
Formerly: Proceedings of the Estonian Academy of Sciences Engineering
(ISSN 1406-0175)
Published since 1995

Publisher
Journal Information
» Abstracting/Indexing
List of Issues
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
Vol. 13, Issue 4
Vol. 13, Issue 3
Vol. 13, Issue 2
Vol. 13, Issue 1
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other Journals
» Staff

On a possibility of estimating the feedback sign of the Earth climate system; 260-268

(Full article in PDF format)


Authors

Olavi Kärner

Abstract

The growth rate of the second moment of the time series increment as a function of the increment range can be used for estimating the sign of feedback of the underlying physical system. The influence of the periodic nature of the time series to the growth rate of its structure function is considered. The approach is used to describe the variability of the time series of the global average outgoing long wave radiation (OLR). It is shown that the series annual cycle plays a crucial role in preventing the growth of the variance of the time series increments and leads to its nearly stationary long-range behaviour. The analysis of the OLR time series indicates that a negative feedback should dominate in the earth climate system. The example is believed to be useful for better understanding of the influence of the increasing concentration of CO2 in the Earth atmosphere.

Keywords

Earth climate system, feedback sign, time series analysis.

References

 1. Houghton , J. T. , Meira Filho , L. G. , Callander , B. A. , Harris , N. , Kattenberg , A. and Maskell , K. , eds. Climate Change 1995: The Science of Climate Change. Contribution of WG~I to the Second Assessment Report of the IPCC. Cambridge University Press , 1996.

 2. Hartmann , D. L. Global Physical Climatology. Academic Press , San Diego , 1994.

 3. Simpson , G. C. The distribution of terrestrial radiation. Mem. Roy. Meteorol. Soc. , 1929 , III , 53–78.

 4. Vonder Haar , T. H. and Suomi , V. E. Measurements of the earth’s radiation budget from satellites during a five-year period , I. Extended time and space means. J. Atmos. Sci. , 1971 , 28 , 305–314.

 5. Ellis , J. S. , Vonder Haar , T. H. , Levitus , S. and Oort , A. H. The annual variation in the global heat balance of the earth. J. Geophys. Res. , 1978 , C83 , 1958–1962.

 6. Hansen , J. , Lacis , A. , Ruedy , R. , Sato , M. and Wilson , H. How sensitive is the World’s Climate? Natl. Geogr. Res. Exploration , 1993 , 9 , 142–158.

 7. Bryson , R. A. The paradigm of climatology: An essay. Bull. Amer. Meteorol. Soc. , 1997 , 78 , 449–455.

 8. Mandelbrot , B. B. The Fractal Geometry of Nature. W. H. Freeman , New York , 1982.

 9. Davis , A. , Marshak , A. , Wiscombe , W. and Cahalan , R. Multifractal characterizations of intermittency in nonstationary geophysical signals and fields. In Current Topics in Nonstationary Analysis (Trevino , G. et al. , eds.). World-Scientific , Singapore , 1996 , 97–158.

10. Kärner , O. Some examples of negative feedback in the earth climate system. Centr. European J. Phys. , 2005 , 3 , 190–208.

11. Monin , A. S. and Yaglom , A. M. Statistical Fluid Mechanics , vol. 2. MIT Press , Boston Massachusetts , 1975.

12. Lovejoy , S. and Schertzer , D. Scale invariance in climatological temperatures and the local spectral plateau. Ann. Geophys. , 1986 , 4B , 401–410.

 
Back

Current Issue: Vol. 19, Issue 4, 2013





Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December