ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
cover
Proceedings of the Estonian Academy of Sciences. Engineering
On a possibility of estimating the feedback sign of the Earth climate system; pp. 260–268
PDF | https://doi.org/10.3176/eng.2007.3.07

Author
Olavi Kärner
Abstract

The growth rate of the second moment of the time series increment as a function of the increment range can be used for estimating the sign of feedback of the underlying physical system. The influence of the periodic nature of the time series to the growth rate of its structure function is considered. The approach is used to describe the variability of the time series of the global average outgoing long wave radiation (OLR). It is shown that the series annual cycle plays a crucial role in preventing the growth of the variance of the time series increments and leads to its nearly stationary long-range behaviour. The analysis of the OLR time series indicates that a negative feedback should dominate in the earth climate system. The example is believed to be useful for better understanding of the influence of the increasing concentration of CO2 in the Earth atmosphere.

References

 1. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K., eds. Climate Change 1995: The Science of Climate Change. Contribution of WG~I to the Second Assessment Report of the IPCC. Cambridge University Press, 1996.

 2. Hartmann, D. L. Global Physical Climatology. Academic Press, San Diego, 1994.

 3. Simpson, G. C. The distribution of terrestrial radiation. Mem. Roy. Meteorol. Soc., 1929, III, 53–78.

 4. Vonder Haar, T. H. and Suomi, V. E. Measurements of the earth’s radiation budget from satellites during a five-year period, I. Extended time and space means. J. Atmos. Sci., 1971, 28, 305–314.

doi:10.1175/1520-0469(1971)028<0305:MOTERB>2.0.CO;2

 5. Ellis, J. S., Vonder Haar, T. H., Levitus, S. and Oort, A. H. The annual variation in the global heat balance of the earth. J. Geophys. Res., 1978, C83, 1958–1962.

 6. Hansen, J., Lacis, A., Ruedy, R., Sato, M. and Wilson, H. How sensitive is the World’s Climate? Natl. Geogr. Res. Exploration, 1993, 9, 142–158.

 7. Bryson, R. A. The paradigm of climatology: An essay. Bull. Amer. Meteorol. Soc., 1997, 78, 449–455.

doi:10.1175/1520-0477(1997)078<0449:TPOCAE>2.0.CO;2

 8. Mandelbrot, B. B. The Fractal Geometry of Nature. W. H. Freeman, New York, 1982.

 9. Davis, A., Marshak, A., Wiscombe, W. and Cahalan, R. Multifractal characterizations of intermittency in nonstationary geophysical signals and fields. In Current Topics in Nonstationary Analysis (Trevino, G. et al., eds.). World-Scientific, Singapore, 1996, 97–158.

10. Kärner, O. Some examples of negative feedback in the earth climate system. Centr. European J. Phys., 2005, 3, 190–208.

doi:10.2478/BF02475587

11. Monin, A. S. and Yaglom, A. M. Statistical Fluid Mechanics, vol. 2. MIT Press, Boston Massachusetts, 1975.

12. Lovejoy, S. and Schertzer, D. Scale invariance in climatological temperatures and the local spectral plateau. Ann. Geophys., 1986, 4B, 401–410.

Back to Issue

Back issues